
#IUG2019

Sunday, May 5th | Pre-Conference
Monday, May 6th – Wednesday, May 8th | Main Conference

#IUG2019

How to SQL (Sierra)
Part 2
● JEREMY GOLDSTEIN: Minuteman Library Network
● PHIL SHIRLEY: Cuyahoga Falls Library
● RAY VOELKER: The Public Library of Cincinnati and Hamilton County

https://iug2019-sql.github.io/

https://iug2019-sql.github.io/

#IUG2019

Recap

• Getting started
• PGAdmin III
• Basic Query Statement:

– Clauses: SELECT, FROM, WHERE, GROUP BY, etc.
• Order is important!

– Comments: --
• used to add comments to statement, or to prevent execution of statement

#IUG2019

Recap: Relational Database

• Sierra SQL database is a relational database
– Data is structured in tables
– Relationships between tables are often defined by keys

• primary key
• foreign key

#IUG2019

Recap: Keys

#IUG2019

Recap: Join

• JOIN (or INNER JOIN)
– Given two sets `A` (left) and `B` (right), performing a JOIN will

return a set containing all elements of set `A` that also belong to
set `B`

#IUG2019

Recap: Left Join

• LEFT JOIN (or LEFT OUTER JOIN)
– Given two sets `A` (left) and `B` (right) performing this join will

return a set containing ALL elements of set `A` AND elements of
set `A` that also belong to set `B`

#IUG2019

Recap: Left Join (cont.)

• LEFT JOIN operation will still return data for sets to the left
when no data exists in the sets to the (right)
– As you see below, NULL values are returned in columns from

sierra_view.bib_record_property

#IUG2019

Recap: Left Join (cont.)

SQL statement that produced the previous output:

#IUG2019

Recap: Subqueries

• Useful for breaking up query into logical, more
understandable parts, as well as constraining
one-to-many relationships

• Examples:
– Get names of bib record titles that have a creation date within the

last 12 hours
https://iug2019-sql.github.io/figs/figure_2.1.html

– Get all patron notes by patron record number (subquery in
SELECT clause)
https://iug2019-sql.github.io/figs/figure_2.1.1.html

https://iug2019-sql.github.io/figs/figure_2.1.html
https://iug2019-sql.github.io/figs/figure_2.1.1.html

#IUG2019

Agenda

• Why Use SQL
• Let’s build a query from a scenario:

– We want to start producing reports concerning holds that patrons
create on different record types

– Explore a number of concepts along the way
• Aggregates, case, temp tables, indexes, data types and casting

• Tips and tricks
– Working with strings

• Some further examples and resources

#IUG2019

Why Use SQL?

• Advantages over other Sierra tools:
– Powerful text searching, parsing, formatting
– Aggregation of data
– Incorporate mathematical calculations into output
– Fully customizable

• Extract otherwise inaccessible data
– Sierra user permissions
– Order and checkin record data across accounting units
– Reading History
– Network access table

#IUG2019

Why Use SQL (cont.)

• “Simplicity” / Standardization of SQL Language:
– Resources for creating meaningful queries are plentiful
– SQL skills are transferable to other applications.

• Can incorporate queries into many useful external
applications
– Automate reports
– Add live Sierra data to websites
– Combine with Sierra APIs to streamline workflows

#IUG2019

Let’s build a query

• Good place to start is with the Sierra DNA documentation:
– https://techdocs.iii.com/sierradna/

• Table concerning holds is in the section `Transactions` -> `Circulation` as table
`sierra_view.hold`

https://techdocs.iii.com/sierradna/

#IUG2019

Let’s build a query (cont.)

Figure 2.9

https://iug2019-sql.github.io/figs/figure_2.9_1.png

#IUG2019

Let’s build a query: Aggregate

• Getting a sense of the scope of the holds:
– Running a query to gather a COUNT(), by type (bib, item, volume

level holds): We’ll use the GROUP BY clause

#IUG2019

Let’s build a query: Aggregate (cont.)

• Output of that query breaks down the numbers by type:

`b` = bib level holds
`i` = item level holds
`j` = volume level holds

• How about next breaking that up by patron type?

#IUG2019

Let’s build a query: Aggregate (cont.)

● Notice that we now JOIN
sierra_view.patron_record to bring in
the ptype_code

● sierra_view.patron_record was added
to the GROUP BY clause to be aggregated
as well
○ Note that all columns selected need to

be in the GROUP BY clause as well
● The aggregate function COUNT() returns a

count of those groupingsFigure 12

https://iug2019-sql.github.io/figs/figure_2.12.html

#IUG2019

Let’s build a query: Aggregate (cont.)

Previous query output (partial)...

● Output still consists of record_type_code, but
now also aggregates on another column,
ptype_code

● These two columns are aggregated together in
the COUNT() function and are represented by
the column count_holds

Figure 13

https://iug2019-sql.github.io/figs/figure_2.13.png

#IUG2019

Let’s build a query: Aggregate (cont.)

• Suppose now we wanted to filter or constrain the results
to groups of `ptype_code` that had a COUNT() of holds
above a certain threshold?
– WHERE clause won’t work on aggregates
– HAVING clause will work on aggregates

#IUG2019

Let’s build a query: Aggregate (cont.)

● Using the HAVING clause below, we’re able to
limit to the patron types having more than 1000
holds of each of the hold level types
(`b`, `i`, `j`)

Figure 14:
https://iug2019-sql.github.io/figs/figure_2.14.html

https://iug2019-sql.github.io/figs/figure_2.14.html

#IUG2019

Let’s build a query: Aggregate (cont.)

Previous query results ...

Figure 15

https://iug2019-sql.github.io/figs/figure_2.15.png

#IUG2019

Let’s build a query: Aggregate (cont.)

• Other useful aggregates:
– MIN()
– MAX()
– AVG()
– SUM()

Figure 16

https://iug2019-sql.github.io/figs/figure_2.16.html

#IUG2019

Let’s build a query: Aggregate (cont.)

• Previous query output...

Figure 17

https://iug2019-sql.github.io/figs/figure_2.17.png

#IUG2019

Let’s build a query: Temp Tables

• We’re interesting in examining holds now from a “supply
and demand” perspective:
– We’d like to resolve each hold to a `bib_record_id` so we could

get a sense of the counts of holds on each title.
– A hold in the hold table is on a `record_id`, which could be for

bib (`b`), item (`i`), or volume (`j`) level

#IUG2019

Let’s build a query: Temp Tables (cont.)

• Lets create a TEMPORARY TABLE (or, TEMP TABLE) with
data from multiple tables to help simplify things…

• These tables are removed after a session is ended
https://www.postgresql.org/docs/current/sql-createtable.html#AEN67422

• Useful to:
– Simplify / make a statement more logical
– Speed up other parts of the query (create indexes, etc)

https://www.postgresql.org/docs/current/sql-createtable.html#AEN67422

#IUG2019

Let’s build a query: Temp Tables (cont.)

• DROP TABLE clause helps if you’re
going to modify the query, and
re-run it (to avoid an error on
multiple runs)

• We bring in data about the record
type (`r.record_type_code`),the
patron type (`p.ptype_code`), and
all the rest of the data concerning
the hold (`h.*`)

• We can work with our temp table in
subsequent statements, as long as
it’s the same sessionFigure 18

https://iug2019-sql.github.io/figs/figure_2.18.html

#IUG2019

Let’s build a query: Temp Tables (cont.)

• The previous TEMP TABLE query only tells us what type of
record the hold was for.

• How do we resolve record types that are not bib (`b`) to
the bib record they’re linked to?

• CASE statement, can be used to produce different results
depending on a conditional expression

#IUG2019

Let’s build a query: Temp Tables (cont.)

• CASE statement:
– Allows for the execution of a block of code conditionally
– Similar to IF / THEN / ELSE
– Tip: make sure something is returned, if the main conditions are

not met!

#IUG2019

Let’s build a query: CASE

● This section of the partial SQL
statement demonstrates resolving item
(`i`) and volume (`j`) to the
`bib_record_id` that they are linked to.

● Full TEMP TABLE creation:
Figure 19.1:
https://iug2019-sql.github.io/figs/figure_2
.19.1.html

https://iug2019-sql.github.io/figs/figure_2.19.1.html
https://iug2019-sql.github.io/figs/figure_2.19.1.html

#IUG2019

Let’s build a query: `WITH` clause

• Now that we have our TEMP TABLE, `temp_hold_data`
we can do some more with it

• We can also simplify things by using WITH clause to create
a Common Table Expression (CTE)
– CTE can be thought of as defining temporary tables that exist just

for one query
– This is just one optional method that can be used to simplify logic

of a complex SQL statement

#IUG2019

Let’s build a query: `WITH` clause (cont.)

Figure 20:
https://iug2019-sql.github.io/figs/figure_2.20.html

https://iug2019-sql.github.io/figs/figure_2.20.html

#IUG2019

Let’s build a query: `WITH` clause (cont.)

#IUG2019

Let’s build a query: STRING_AGG()

• From previous query, the PostgreSQL STRING_AGG()
function allows us to create a list (delimited by the `,`
character) of the `pickup_location_code` values for
each title

• STRING_AGG() takes a TEXT data type as the first
argument, and a TEXT data type as the delimiter

• https://www.postgresql.org/docs/current/functions-aggregate.html

https://www.postgresql.org/docs/current/functions-aggregate.html

#IUG2019

Data Types & Casting

https://www.postgresql.org/docs/current/datatype.html

• Some important and common PostgreSQL data types to understand
– INTEGER: signed, four-byte integer (`1`, `-1`, `42`, etc)
– NUMERIC: real number or NUMERIC(p,s) with p digits with s number after

the decimal point
– TEXT: character string with unlimited length
– CHAR: single character, or `CHAR(n)` fixed-length of `n` characters with

space padded
– VARCHAR(n): variable-length character string of `n` characters with

no space padded
– BOOLEAN: true or false values (can use special `IS TRUE` or `IS FALSE`

clause to test)

https://www.postgresql.org/docs/current/datatype.html

#IUG2019

Data Types & Casting (cont.)

https://www.postgresql.org/docs/current/datatype-datetime.html

• Date / Time Types:
– DATE: ISO 8601 (`YYYY-MM-DD`):

`2019-03-17`
– TIMESTAMP: ISO 8601 date with time (24-hour clock):

`2019-03-17 11:41:13.979849`
Time zone is optional
TIMESTAMP WITH TIME ZONE:
`2019-03-17 11:41:13.979849-04`

https://www.postgresql.org/docs/current/datatype-datetime.html

#IUG2019

Data Types & Casting (cont.)

https://www.postgresql.org/docs/current/datatype-datetime.html

• Date / Time Types (cont.):
– INTERVAL: defines periods of time

• Traditional Postgres format:
`1 year 2 months 3 days 4 hours 5 minutes 6 seconds`

• Useful in defining ranges of time limit in WHERE clause

Figure 23

https://www.postgresql.org/docs/current/datatype-datetime.html
https://iug2019-sql.github.io/figs/figure_2.23.html

#IUG2019

Data Types & Casting (cont.)

• Casting one data type to another is necessary to perform
some operations: `::` or CAST(expression AS type)
(`CAST` example here: https://iug2019-sql.github.io/figs/figure_2.23.1.html)

– From the previous query example:

• The string value `1 hour` is being converted to the
INTERVAL data type, so that it may be included in an
operation (subtraction) involving another date format
– TIMESTAMP data type is returned from the function, NOW()

https://iug2019-sql.github.io/figs/figure_2.23.1.html

#IUG2019

Working With Date Types

• NOW() will return current timestamp
• Use `::` to convert data types
• TO_CHAR() can be used for date and

timestamp formatting
• Remember that ISO 8601

(`YYYY-MM-DD`) can be useful for
sorting!

• Template Patterns for Date/Time Formatting can be found here:
https://www.postgresql.org/docs/current/functions-formatting.html

https://www.postgresql.org/docs/current/functions-formatting.html

#IUG2019

Let’s build a query: INDEX

• Returning to our example, we were working with a
TEMP TABLE: https://iug2019-sql.github.io/figs/figure_2.20.html

• What if our query is slow?
• Queries can be made to run significantly more quickly

when an INDEX is used!
• Adding the CREATE INDEX statement to the query:

https://iug2019-sql.github.io/figs/figure_2.26.html

https://iug2019-sql.github.io/figs/figure_2.20.html
https://iug2019-sql.github.io/figs/figure_2.26.html

#IUG2019

Let’s build a query: `INDEX`

• Creating good indexes can be useful when building a
TEMP TABLE that will be used in multiple or complex
queries involving a JOIN or GROUP BY operation.
– Keep in mind that a index scan is better than a sequential scan

when doing an operation on columns.
– Further reading about using indexes:

• http://www.postgresqltutorial.com/postgresql-indexes/postgresql-inde
x-types/

• https://use-the-index-luke.com

http://www.postgresqltutorial.com/postgresql-indexes/postgresql-index-types/
http://www.postgresqltutorial.com/postgresql-indexes/postgresql-index-types/
https://use-the-index-luke.com

#IUG2019

• Here’s the query script up to this point:
https://iug2019-sql.github.io/figs/figure_2.28.html

• We want to bring in some counts of available items.
– To keep things simple, we’re going to limit to:

• Holds that are bib level
• Holds placed by patrons with ptype_code = 0

Let’s build a query (cont.)

https://iug2019-sql.github.io/figs/figure_2.28.html

#IUG2019

Figure 29:
https://iug2019-sql.github.io/figs/figure_2.29.html

Let’s build a query (cont.)

● Statement will count available items
meeting certain criteria:
○ `item_status_code`
○ `due_gmt`

https://iug2019-sql.github.io/figs/figure_2.29.html

#IUG2019

Let’s build a query: COALESCE()

• COALESCE(): Returns the first argument that is not `NULL`
• In the example above, ‘c.due_gmt` could have a value of `NULL`

(remember `LEFT OUTER JOIN`?)
• If age of due date is greater or equal to 60 days, we get a value of `FALSE`
• Otherwise, we get a value of `TRUE` and can consider the item to be “active”

Figure 30

https://iug2019-sql.github.io/figs/figure_2.30.png

#IUG2019

Let’s build a query: Final Output

• “Final” bib level holds to available item query:
https://iug2019-sql.github.io/figs/figure_2.31.html

Figure 32:
https://iug2019-sql.github.io/figs/figure_2.32.png

https://iug2019-sql.github.io/figs/figure_2.31.html
https://iug2019-sql.github.io/figs/figure_2.32.png

#IUG2019

Let’s build a query: Final Output (cont.)

• https://iug2019-sql.github.io/figs/figure_2.31.html
• Please note the following things about this final SQL statement:

– We created a second TEMP TABLE called “temp_title_item_counts”,
to more easily make the final calculation for `hold_to_item_ratio`
(which is the ratio between holds: `count_holds_title` and
available items: `count_items_available`

– NOTE that this is also a simplified output of the bib level holds only
– Does anyone know why we have a CASE clause checking to see if

`count_items_available` is equal to zero?

https://iug2019-sql.github.io/figs/figure_2.31.html

#IUG2019

Tips and Tricks

• Orders of operations and parentheses are important!

Figure 35

https://iug2019-sql.github.io/figs/figure_2.35.png

#IUG2019

String Functions

• PostgreSQL has many String Functions / Operators
available
– Functions allow you to modify, parse, and search within strings
– Includes POSIX regex and simplified pattern matching
– https://www.postgresql.org/docs/9.1/functions-string.html

https://www.postgresql.org/docs/9.1/functions-string.html

#IUG2019

CONCAT

• Use concatenation to chain strings together
• Three methods available: CONCAT(), CONCAT_WS(), ||

#IUG2019

CONCAT and COALESCE

• Be careful with `NULL` values!
– This results in a `NULL` value:

• To avoid this type of behaviour, consider using the CONCAT() or
COALESCE() functions: https://iug2019-sql.github.io/figs/figure_2.34.html

Figure 33

Figure 34

https://iug2019-sql.github.io/figs/figure_2.34.html
https://iug2019-sql.github.io/figs/figure_2.33.png
https://iug2019-sql.github.io/figs/figure_2.34.png

#IUG2019

Nesting String Functions

Using string functions to display an author in first name, last name order

#IUG2019

Pattern Matching: LIKE

• LIKE provides a simple pattern matching option
• Two Wildcards

– ‘_’ single instance of any character
– ‘%’ any number of characters (including 0)

• Here we are finding all locations starting with ‘act’

#IUG2019

Pattern Matching: POSIX Regex

• POSIX regex operators: `~`, `~*`, `!~`, ` !~*`
– Matches and Not matches
– With and without case sensitivity

• Here we are finding all locations containing 4
lowercase letters and ending in y

#IUG2019

Pattern Matching: POSIX Regex

Regular Expression tip: Use the site regex101.com to test

https://regex101.com/

#IUG2019

Pattern Matching: Regex Functions

● SUBSTRING() extracts a specified set of characters from a string
● Can accomplish this two ways

○ Regex ‘^[a-z]{3}’: extract 3 lowercase letters from start
○ Positionally ‘FROM 1 FOR 3’: extract 3 letters starting at 1st character

#IUG2019

Pattern Matching: Regex Functions

● regexp_matches()
Returns matches on POSIX regular expression against a string

Figure 36

https://github.com/iug2019-sql/iug2019-sql.github.io/blob/master/figs/figure_2.36.sql

#IUG2019

String Functions Cont

LOWER()
UPPER()
INITCAP()
REVERSE()
LENGTH()

Some other useful functions to know

LEFT()
TRIM()
REGEXP_MATCHES()
REGEXP_REPLACE()

#IUG2019

Tables of Note: Linking Records

• `sierra_view.*_record_link` type tables contain primary keys
for both record types, therefore linking them
– Examples:

• `bib_record_item_record_link`
• `bib_record_volume_record_link`
• `bib_record_order_record_link`

– Useful for:
• Gather record counts
• Chain data types together without having to touch record tables

#IUG2019

Tables of Note: Linking Records (cont.)

#IUG2019

Unique to SierraDNA queries

Other unique fields for fun queries:
• record_metadata.deletion_date_gmt

– Count deleted records
• varfield.occ_num

– Pick out first occurrences of varfields
such as ISBN

• bool_info.sql_query
– See sql queries underlying create list

searches

#IUG2019

Further examples

• Useful resources on GitHub:
– Links to these presentations:

https://github.com/iug2019-sql/iug2019-sql.github.io
– Tips and Tricks:

https://github.com/iug2019-sql/iug2019-sql.github.io/bl
ob/master/tips_and_tricks.md

https://github.com/iug2019-sql/iug2019-sql.github.io
https://github.com/iug2019-sql/iug2019-sql.github.io/blob/master/tips_and_tricks.md
https://github.com/iug2019-sql/iug2019-sql.github.io/blob/master/tips_and_tricks.md

#IUG2019

Further examples

• Useful resources on GitHub (cont.):
– The Public Library of Cincinnati and Hamilton County:

https://github.com/plch/sierra-sql/wiki
– Minuteman Library Network:

https://github.com/jmgold/SQL-Queries/wiki
– The University of North Carolina at Chapel Hill:

https://github.com/UNC-Libraries/III-Sierra-SQL/wiki

https://github.com/plch/sierra-sql/wiki
https://github.com/jmgold/SQL-Queries/wiki
https://github.com/UNC-Libraries/III-Sierra-SQL/wiki

#IUG2019

Consider Attending

• Automating Booklist Curation with SQL
– Tuesday 1:30-2:30 Deer Valley

• Cache and Release: Capturing and Using Sierra's
Temporary SQL Data
– Wednesday 3:00-4:00 Deer Valley

• SQL Users Birds of A Feather

#IUG2019

Find Us On Slack

All three of us can be found on the Sierra_ILS slack
workspace, managed by Craig Bowman, Jeremy and Ray

#IUG2019

Questions?
Jeremy Goldstein jgoldstein@minlib.net
Phil Shirley pshirley@fallslibrary.org
Ray Voelker ray.voelker@cincinnatilibrary.org

